Гиалуроновая кислота — история. Строение и применение в медицине гиалуроновой кислоты В каких выделениях человека есть гиалуроновая кислота

Гиалуроновая кислота (ГК), также известная как (соль кислоты) или гиалуронан (объединяющее обозначение для кислоты и ее соли), представляет собой анионный натуральный полисахарид (несульфированный простейший гликозаминогликан), который является важным компонентом нервной, эпителиальной, соединительной тканей и основным ингредиентом внеклеточного матрикса.

Гиалуроновая кислота также входит в состав многих, присущих живым организмам биологических жидкостей (синовиальная жидкость, слюна и пр.). Данное вещество может продуцироваться некоторыми бактериями (например, стрептококками ) и выделяться из органов животных (гребень петуха, стекловидное тело и хрящевая ткань рогатого скота).

В человеческом теле массой около 70-ти килограмм в среднем содержится примерно 15 граммов этой эндогенной кислоты, третья часть которой ежесуточно подвергается преобразованию (расщепляется или синтезируется).

Структура и строение

Структурная схема ГК характерна для линейного полисахарида, состоящего из чередующихся остаточных частей N-aцетил-D-гликозамина и D-глюкуроновой кислоты , последовательно соединенных гликозидными связями β-1,3 и β-1,4.

Одна молекула данной кислоты может включать до 25 тысяч подобных дисахаридных звеньев. ГК природного происхождения обладает молекулярной массой варьирующей в пределах 5000-20000000 Да. У человека среднее значение молекулярной массы находящегося в синовиальной жидкости полимера равняется 3140000 Да.

Молекула кислоты энергетически стабильна, в том числе вследствие стереохимии дисахаридов входящих в ее состав. В пиранозном кольце объемные заместители расположены в стерически выгодных позициях, тогда как меньшие по объему атомы водорода размещены в менее выигрышных аксиальных положениях.

Образование: Окончил Винницкий национальный медицинский университет им. Н.И.Пирогова, фармацевтический факультет, высшее фармацевтическое образование – специальность «Провизор».

Опыт работы: Работа в аптечных сетях «Конекс» и «Биос-Медиа» по специальности «Фармацевт». Работа по специальности «Провизор» в аптечной сети «Авиценна» города Винница.

Комментарии

Я тоже кстати гиалуронку в таблетка принимаю. Кстати, у Эвалара хорошая, да, но там эффект накопительный, надо 2 месяца пить и не забывать

Было много проблем с кожей:шелушилась, трескалась, стали появляться морщины. Из-за этого решила попробовать гиалуроновую кислоту в таблетках, да так и осталась ее пить. Уже 6 курсов прошла, с кожей стало гораздо лучше, даже холода теперь не страшны.

Спасибо за хорошую статью. Сама принимаю гиалуронку уже давно. Пробовала и крем, и инъекции, но остановилась на таблетках. Думаю, что это все-таки самое практичное, что создали.

Гиалуроновая кислота – природный полисахарид животного происхождения. Широко распространена в природе, содержится в основном веществе многих видов соединительной и нервной ткани (в коже, связках, пуповине, сердечных клапанах, стекловидном теле глаза, роговице и др.) ибиологических жидкостей (слюне,синовиальной исуставной жидкости, и др.). В соединительной ткани дермы гиалуроновая кислота расположена между волокнами коллагена и эластина, в клетках рогового слоя – в корнеоцитах.

Таким образом, гиалуроновая кислота является одним из основных компонентов внеклеточного матрикса. Принимает значительное участие впролиферациии миграции клеток. Продуцируется некоторымибактериями(например,Streptococcus ).

Количество гиалуроновой кислоты в различных источниках может составлять до 5% сухой массы ткани. В теле человека весом 70 кг в среднем содержится ~15 г гиалуроновой кислоты.

Получение

В промышленности гиалуроновую кислоту получают двумя способами: физико-химическим и биотехнологическим.

Физико-химический способ . По этому способу гиалуроновую кислоту получают, в основном, из петушиных гребней, человеческих пуповин и глаз крупного рогатого скота. Технологическая схема получения гиалуроновой кислоты из вышеназванной биомассы включает следующие стадии:ферментативное расщепление соединительной ткани с выделением гиалуроновой кислоты илиэкстрагирование гиалуроновой кислоты из биомассы разбавленными растворами щелочи или кислоты, последующее специфическое фракционирование выделенного продукта для удаления белковых и липидных составляющих, несколько этапов очистки, осаждение и высушивание.

В последнее время гиалуроновую кислоту все чаще получают более выгодным с экономической точки зрения биотехнологическим путем из растительного сырья (пшеничный субстрат) с использованием бактериальных культур (Streptococcus zooepidermicus илиStreptococcus equi ). Этапы получения гиалуроновой кислоты по биотехнологии следующие: строго контролируемыйбиосинтез гиалуроновой кислотыбактериальными клетками (бактерии размножаются и помещаются в бродильный чан, где они синтезируют гиалуроновую кислоту в специальных условиях); выделение наработанной гиалуроновой кислоты из бактерий и ее дальнейшая очистка; осаждение и высушивание. Все процессы биотехнологического получения гиалуроновой кислоты проводят в условиях постоянного бактериологического и реологического контроля, обеспечивающего высокое качество получаемого продукта и, самое главное, заданную молекулярную массу гиалуроновой кислоты.

Химическое строение и молекулярная структура

Гиалуроновая кислота – несульфированныйгликозаминогликан. В природных условиях гиалуроновая кислота синтезируется классом встроенныхмембранных белков, называемыхгиалуронат-синтетазами . В организмах позвоночных содержатся три типа гиалуронат-синтетаз: HAS1, HAS2 и HAS3. Считается, что эти ферменты соединяют молекулыглюкуроновой кислоты иN -ацетилглюкозамина в строго чередующемся порядке.

Структурная формула фрагмента макромолекулы гиалуроновой кислоты приведена на рис.1. Макромолекулярные цепи построены из чередующихся звеньев остатков β- D -глюкуроновой кислоты иβ- N -ацетилглюкозамина , связанныхβ-(1→4)- и β-(1→3)-гликозидными связями .

Атомы водорода СООН-групп некоторых элементарных звеньев β-D -глюкуроновой кислоты могут быть замещеныNaилиK. Такие полисахариды называют натриевой или калиевой солью гиалуроновой кислоты (гиалуронат натрия илигиалуронат калия ).

Элементарной повторяющейся единицей макромолекулы гиалуроновой кислоты является дисахаридный фрагмент. В качестве примера на рис.2 представлена элементарная единица макромолекулы натриевой соли гиалуроновой кислоты

Наиболее энергетически выгодной конформацией элементарного звена молекулы гиалуроновой кислоты является конформация кресла С1 (рис.3).

Объёмные заместители пиранозногокольца находятся в стерически выгодныхэкваториальных положениях, а меньшие по размеру атомы водорода занимают менее выгодныеаксиальные позиции.

Благодаря присутствию β-(1→3)-гликозидных cвязeй макромолекула гиалуроновой кислоты, насчитывающая несколько тысяч моносахаридных остатков, принимает конформацию спирали (рис.4).

На один виток спирали приходится три дисахаридных блока. Локализованные на внешней стороне спирали гидрофильные карбоксильные группы остатков глюкуроновой кислоты могут связывать ионы Ca 2+ .

Первое упоминание о необычном полисахариде с высокой молекулярной массой, который выделили из стекловидного тела бычьего глаза, было сделанo в 1934 году немецкими биохимиками Karl Meyer и John Palmer. Именнo они предложили назвать новое вещество гиалуроновой кислотой. Но еще в 1918 году Levene и Lopez - Suarez выделили из стекловидного тела и пуповинной крови полисахарид, состоявший из глюкозамина, глюкуроновой кислоты и небольшого количества сульфат-иoнов. Тогда его название было мукоитин - серной кислоты, но в настоящее время установилось, что это была гиалуроновая кислота, выделенная с примесью сульфатированных гликозаминогликанов .

В течение следующих 10 лет K. Meyer и ряд других ученых выделили гиалуроновую кислоту из органов животных. В 1937 г F. Kendall выделил гиалуроновую кислоту из капсул стрептококков .

Первый опыт применения ГК в медицине относится к 1943 г., когда советский врач Николай Федорович Гамалея использовал ее в комплексных повязках для обмороженных красноармейцев в военном госпитале. Экстракт из пуповины, названный им «фактором регенерации», был утвержден Минздравом СССР в качестве препарата «Регенератор». Так же венгерский ученый Андре Балаш с 1947 исследовал вязкость ГК в зависимости от pH и ионной силы раствора, ее расщепление под действием ультрафиолета, а также изучал, как гиалуроновая кислота действует на живые клетки .

В настоящее время гиалуронан как объект исследования можно встретить в биохимии, молекулярной биофизике, биоорганической и радиационной химии. Медицинские аспекты включают изучение роли гиалуроновой кислоты в оплодотворении, эмбриогенезе, выработки иммунного ответа, в заживлении ран, онкологических и инфекционных заболеваниях, процессах старения и в решении проблем эстетической медицины. Широкий спектр практического применения гиалурoновой кислоты способствует регенерации эпителия, предотвращает образование грануляционных тканей, спаек, рубцов, снижает отечность, уменьшает кожный зуд, нормализует кровообращение, способствует рубцеванию трофических язв, предохраняет внутренние ткани глаза. Достаточно хорошо гиалурoновая кислота используется в прикладной биохимии и энзимологии в качестве субстрата для количественного определения ферментов гиалуронидазнoго действия .

Что же представляет собой гиалуроновая кислота на самом деле? Это длинная неразветвленная молекула, в которой чередуются остатки D-глюкуроновой кислоты и N-ацетилглюкозамина. Не вдаваясь в подробности, отметим, что оба эти вещества - это модифицированные молекулы глюкозы. Молекула гиалурoновой кислоты может содержать более 30 000 остатков каждого из этих веществ. Кроме того, в организме эта цепочка всегда связана с некоторым количеством белка. Интересно, что подобная структура универсальна и встречается у самых разных представителей животного мира и даже у некоторых бактерий. Гиалуроновая кислота относится к классу гликозаминогликанов .

Рисунок 1. Структура гиалуроновой кислоты

Ранее использовались методы получения гиалурoновой кислоты из стекловидного тела глаза коровы и гребешка петуха. Недостатками данных методов производства являлись их дороговизна и наличие примесей белка в конечном продукте, что приводило к большому количеству аллергических реакций на препарат.

Современное производство ГК основано на процессе ферментации с использованием бактерий (Streptococcus equi и Streptococcus zooepidemicus). ГК, полученная таким путем, имеет более высокую степень очистки, чем и объясняется лучшая переносимость ГК пациентами. Биотехнология получения гиалуронана из бактериальных штаммов продуцентов включает культивирование их в подбираемых условиях, при которых на стадии логарифмического роста на поверхности бактериальных клеток формируется капсула из полисахарида, а на стационарной стадии роста ГК может секретироваться в культурaльную жидкость, капсула истончается или полностью исчезает .

ГК чувствительна к кислотно-щелочному гидролизу. Даже слабое подкисление раствора ГК уксусной кислотой приводит к необратимому снижению вязкости в 2,5 раза. Минеральными кислотами ГК полностью гидрoлизуется до глюкурoновой кислоты, глюкoзамина, уксусной кислоты и двуокиси углерода. Разбавленная серная кислота за короткое время гидрoлизует кислоту с образованием кристаллов дисахаридов.

Окислительно-восстановительная деполимеризация гиалурoнана. Деструкция полисахаридной макромолекулы под действием окслительно-восстановительных сред протекает по свободнoрадикальному механизму. Свободные радикалы образуются с участием аскорбиновой кислоты, гиалуронана и кислорода. Доказано, что гиалурoновая кислота депoлимеризуется под действием ионов железа в присутствии аскорбиновой кислоты. Следовательно ГК, выделенная в атмосфере азота или аргона, имеет более высокую степень полимернoсти по сравнению с выделенной на воздухе .

Для медицинского применения необходима стерилизация растворов гиалуронана. Ее осуществляют автоклавированием при температуре 120-130ºС или ионизирующим гамма-излучением. В обоих случаях происходит значительная деполимеризация биополимера и потеря его исходной терапевтической активности. Известны способы защиты растворов гиалуронана от деполимеризации, основанные на добавлении к растворам различных аминокислот, борной кислоты и глицерина, сульфата гидрохинолина, мочевой кислоты, фенольных соединений (пирогаллол) .

Характерные свойства гиалуроновой кислоты – ее выраженная биологическая активность, прекрасная биосовместимость, отсутствие антигенности, раздражающего и других побочных эффектов – обратили на себя внимание ученых. Благодаря своим уникальным физико-химическим свойствам ГК нашла применение в различных областях медицины, косметологии и ветеринарии. Тот факт, что ГК входит в состав многих тканей (кожа, хрящи, стекловидное тело) и является органоспецифичной и видонеспецифичной, обуславливает ее применение в лечении заболеваний, связанных с этими тканями .

Биологические функции гиалуроновой кислоты можно разделить на «пассивные» и «активные». Как инертный материал, ГК участвует в гомеостазе тканей, в стерическом регулировании (осмосе) проникновения каких-либо субстанций, выполняет роль «смазки», улучшающей подвижность суставов и т.д. «Активные» функции ГК заключаются в специфическом связывании с белками в межклеточном матриксе и на поверхности клетки. Такое взаимодействие играет важную роль в образовании хрящевой ткани, в процессах клеточной пролиферации, в морфогенезе и эмбриональном развитии животных, а также в механизмах воспаления и возникновения рака .

Гиалуроновая кислота используется в онкологии как лечебное средство. Механизмы действия ГК на опухолевые клетки разнообразно. На молекулярном уровне механизм заключается в том, что высокомолекулярная ГК, связываясь с рецепторами на клеточной мембране опухолевых клеток, замедляет их миграцию и образование метастазов. Второй механизм действия состоит в том, что введение высокомолекулярной ГК способствует формированию соединительнотканной капсулы вокруг опухоли. Третий механизм связан со свойством высокомолекулярной фракции тормозить васкуляризацию опухоли (прорастание кровеносных сосудов в опухоль) и тем самым приводить к замедлению роста и метастазированию опухолей, а низкомолекулярной, наоборот, индуцировать .

Гиалуроновая кислота довольно хорошо проявила себя в заживлении ожоговых ран, язв, рубцов и послеоперационных вмешательств. Ученые выяснили, что она не имеет раздражающего действия, а даже наоборот вызывает противовоспалительный эффект, способствует быстрой регенерации ткани. Биоэксплантат (пленка) на основе окисленной ГК в эксперименте показал ускоренное заживление швов кишечных анастомозов повышенного риска.

ГК используют при приготовлении фармацевтических композиций в качестве загустителей, смазывающих веществ, агентов для пленочных покрытий, устойчивых к желудочному соку, в частности при получении капсул, гелей, коллоидов и различных устройств (например, контактных линз, предметов из марли и т.д.). Вероятно, в основе механизма накопления в соединительно-тканных структурах ряда лекарственных веществ и антибиотиков лежит связывание их с протеогликанами тканей. То же можно утверждать и о механизмах отложения в тканях, особенно в матриксе соединительной ткани, различных патологических продуктов. В норме в первые сутки заживления ран в них отмечается повышение концентрации ГК, которая связываясь с фибриновой сетью, образует переходный матрикс, стимулирующий активацию и миграцию гранулоцитов, макрофагов и фибробластов, пролиферацию эпителиальных клеток. Кроме того, ГК посредством усиления фагоцитоза способствует более полному очищению раны от некротических элементов. Вследствие усиления активности макрофагов увеличивается образование трофического фактора, который привлекает фибробласты и эндотелиальные клетки в пораженную область .

Содержание гиалуронана в коже человека не постоянная величина. Существуют незначительные сезонные колебания ГК в дерме: летом уровень гиалуронана несколько ниже, чем в зимний период. Это связывают с повышенной скоростью деградации ГК под действием УФ-излучения. Наиболее значимо возрастное уменьшение концентрации ГК. Начиная с 60-летнего возраста происходит кратное снижение концентрации ГК в дерме. Поэтому инъекционное внутриклеточное введение нативной ГК представляется вполне естественным способом воспаления ее дефицита. Данный инъекционный метод в эстетической медицине получил название биоревитализации .

В научной литературе можно встретить обширную информацию о химической структуре, макромолекулярной характеристики, биологических свойствах и медицинском применения гиалуроновой кислоты.

ГК входит в состав основного межклеточного вещества соединительной, эпителиальной и нервной тканей, в большом количестве присутствует в стекловидном теле глаза, синовиальной жидкости суставов, коже, стенках артерий и вен, сердечных клапанах, в глoмерулярной базальной мембране почек.

С момента открытия гиалурoновой кислоты произошла значительная эволюция взглядов. Если вначале считали, что данный полисахарид служит пассивным структурным компонентом межклеточного матрикса, то к настоящему времени он включен во многие биологические процессы: от размножения, миграции, дифференцировки клеток в процессе эмбриогенеза до регуляции процессов воспаления и заживления ран, метастазирования раковых клеток. В организме ГК выполняет множественные физиологические функции: служит основой функционирования системы организма, определяет проницаемость тканей и сосудов кровеносной системы, стойкость к проникновению инфекций . Но с возрастом все функции замедляются.

Такое широкое разнообразие биологических свойств гиaлуроновой кислоты обусловлено функцией молекулярной массы, которая играет значительную роль в поведении клеток, полиморфизмом структурных форм и физико-химическими свойствами молекул разной молекулярной массы, зависящими от ионного окружения и концентрации биополимера в тканях и органах .

Подводя итог, можно сказать, что гиалуроновая кислота нашла свое применение во многих отраслях медицины. Ее применяют в косметологических инъекциях (биоревитализация), входит в состав различных косметических средств. Следует отметить, что ГК может иметь и негативные последствия в частых инъекциях под кожу. Чтобы поддержать свою кожу в тонусе нужно вести здоровый образ жизни, правильно питаться и не злоупотреблять вредными привычками. Так же офтальмологи применяют ее в качестве лечения катаракты, синдрома «сухого глаза». В иммунологии применяют для комплексного лечения иммунодефицитных состояний при вирусных инфекциях. Так же можно использовать для лечения язвенных болезней желудка, двенадцатиперстной кишки, с помощью активации трипсина.

Список литературы

  1. Егоров Е.А. Гиалуроновая кислота: применение в офтальмнологии и терапии синдрома «сухого глаза» // РМЖ. Клиническая офтальмология. – 2013. – Том 13, №2. С. – 72.
  2. Сигаева Н.Н., Колесов С.В., Назаров П.В., Вильданова Р.Р. Химическая модификация гиалуроновой кислоты и ее применение в медицине // Вестник Башкирского университета. – 2012. – Т.17. №3. С. – 1221 – 1222.
  3. Стрельникова Л.Н., Клещенко Е.В., Астрин А.В. Химия и жизнь // Ежемесячный научно – популяционный журнал. – 1.12.2010. №12. С. – 22 – 23.
  4. Хабаров В.Н., Бойков П.Я., Селянин М.А. Гиалуроновая кислота: получение, свойства, применение в биологии и медицине. – М.: Практическая медицина, 2012. – 224с.:ил. С. – 9 – 11, 19 – 30, 218.

Текст: Адэль Мифтахова

Даже далёкому от мира косметики человеку сложно было не заметить, что в последние годы словосочетание «гиалуроновая кислота» звучит из каждого утюга. При этом используют её самыми разными способами и в пластической, и глазной хирургии, и для лечения суставов, и в форме инъекций и кремов, и даже пьют в виде БАД и напитков. Мы попросили автора Telegram-канала Don’t Touch My Face Адэль Мифтахову разобраться, как и почему гиалуроновая кислота покорила мир и в чём, собственно, её сила.

Первое упоминание о гиалуроновой кислоте относится к 1934 году, когда биохимик Карл Мейер опубликовал статью об обнаруженном им в стекловидном теле глаз коров полисахариде с крайне высокой молекулярной массой. С тех пор было проведено огромное количество исследований этого вещества, а в 2009 году в специализированном журнале International Journal of Toxicology вышла монументальная статья, суммирующая результаты этих исследований и признавшая гиалуроновую кислоту любого происхождения и её производные безопасными для использования . Первое время гиалуроновую кислоту добывали преимущественно из гребней петухов и она имела исключительно животное происхождение. К счастью, позже было открыто несколько методов синтеза гиалуроновой кислоты в промышленных объёмах с помощью бактерий, которые вырабатывают её в определённых условиях.

Несмотря на своё название гиалуроновая кислота - это не кислота в бытовом её понимании, она не имеет растворяющих или отшелушивающих свойств, как, например, гликолевая. Сама по себе гиалуроновая кислота является естественным компонентом тел млекопитающих, она присутствует во множестве тканей, но наибольшая её концентрация встречается в соединительной ткани суставов. В самом простом понимании гиалуроновая кислота - это сахар, но если молекулярная масса столового сахара около 340 дальтонов (Да), то гиалуроновой кислоты - от 600 тысяч до нескольких миллионов Да. Благодаря своей структуре и большой молекулярной массе её молекулы способны удерживать количество воды, во много раз превышающее их собственное. Именно поэтому в нашем теле гиалуроновая кислота выполняет очень важную функцию сохранения воды в тканях, а также выступает смазывающим веществом для суставов.

Главный миф о гиалуроновой кислоте гласит: размер молекул не позволяет
ей проникать глубоко в кожу

В современной медицине гиалуроновая кислота признана эффективным средством для лечения артрита при введении её напрямую в сустав и используется в глазной хирургии при лечении катаракты и замене роговицы. В последнее время производители также выпускают большое количество пищевых добавок с гиалуроновой кислотой, но её эффективность при приёме внутрь до сих пор не доказана . Как косметический ингредиент гиалуронка (так ласково прозвали вещество обыватели) стала применяться с 80-х годов прошлого века и сегодня используется главным образом двумя способами: как увлажняющий компонент косметики и как филлер при контурной пластике лица, то есть для разглаживания морщин, придания дополнительного объёма и коррекции формы губ, скул и других зон лица.

Магия гиалуроновой кислоты, благодаря которой она и прославилась на весь мир, заключается в её способности притягивать и удерживать воду так, как это не делает ни одно другое вещество. Её молекула - это соединение глюкуроновой кислоты и N-ацетилглюкозамина. Она содержит большое количество кислорода и гидроксильных групп, что позволяет ей формировать сильные водородные связи с водой. Проще говоря, каждая молекула гиалуроновой кислоты - это крошечная губка, которая удерживает воду, что делает её уникальным средством для увлажнения кожи и тканей.

Однако полезные свойства гиалуроновой кислоты не ограничиваются одним лишь увлажнением. С возрастом наш организм вырабатывает всё меньше и меньше гиалуроновой кислоты, этот факт в своё время послужил поводом для её исследования в качестве антивозрастного компонента. Действительно, немецкие дерматологи заметили значительное уменьшение морщин и повышение эластичности кожи при использовании геля гиалуроновой кислоты на поверхности кожи. Исследователи Центра дерматологии и лазерной косметологии из Южной Каролины также доказали эффективность солей гиалуроновой кислоты в лечении себорейного дерматита и раздражений. Впрочем, все эти исследования не объясняют главного - каким именно образом гиалуроновая кислота лечит кожу; учёным только предстоит разобраться во всех тонкостях её воздействия.


На фоне растущего с каждым годом выбора гиалуроновых лосьонов, кремов и сывороток гиалуронка неизбежно обросла множеством мифов. Так, самый популярный из них гласит: ухаживающая косметика с гиалуроновой кислотой не работает, потому что размер её молекул не позволяет ей проникать глубоко в кожу. И в теории это действительно так. Диаметр молекулы гиалуроновой кислоты - около 3000 нм, в то время как расстояние между клетками кожи не превышает 50 нм. Однако, авторы блога The BeautyBrains рассказывают о том, что водоудерживающим компонентам совершенно необязательно проникать в кожу для того, чтобы увлажнять её верхние слои. Для этого им просто нужно находиться на поверхности кожи длительное время - и этого будет вполне достаточно.

Ещё более интересно то, что в 1999 году сотрудники отделения биохимии и молекулярной биологии австралийского Университета Монаша исследовали способности проникновения гиалуроновой кислоты в кожу на мышах и на людях с помощью радиоактивной метки. В результате было доказано , что молекулы гиалуроновой кислоты не только проникают в верхние слои кожи, но и достигают дермы, подкожной жировой клетчатки, а её следы были обнаружены даже в крови.

В последние годы учёные разработали метод получения солей гиалуроновой кислоты - sodium hyaluronate и potassium hyaluronate. Их также иногда называют низкомолекулярной, или гидролизованной гиалуроновой кислотой. Эти соли получают путём удаления из молекулы гиалуроновой кислоты липидов, протеинов и нуклеиновых кислот с сохранением её водоудерживающей способности. В результате размер молекулы значительно уменьшается (до 5 нм), что позволяет веществу проникать в кожу легче, чем обычная гиалуроновая кислота, и увлажнять её на глубоком уровне. Более того, многочисленные исследования способности проникновения солей гиалуроновой кислоты в кожу доказали : они способны не только сами проникать в глубокие слои кожи и увлажнять её, но и выступать в качестве проводника для других веществ.

Если эффективность гиалуронки в увлажнении кожи любого типа доказана, то её антивозрастные и лечебные свойства учёным ещё предстоит изучить

Несмотря на то, что гиалуроновая кислота и её производные имеют доказанную безопасность, в редких случаях при её использовании на коже может проявляться аллергия. Как и при любой другой аллергической реакции, все эксперименты в такой ситуации нужно прекратить. Да, обидно, но, к счастью, гиалуроновая кислота не единственный водоудерживающий компонент, который добавляют в косметику. Аналогичными свойствами обладают глицерин, мочевина, AHA-кислоты в низких концентрациях и некоторые другие . Они также способны удерживать воду, пусть и в гораздо меньшем объёме, чем гиалуроновая кислота, но зато и стоят существенно дешевле.

Другой популярный способ применения гиалуронки в косметологии - инъекции. Сразу оговоримся, что все инвазивные процедуры должен назначать дерматолог, он же расскажет о том, что именно показано и противопоказано конкретно вам. Мы же расскажем о том, какие методики с участием гиалуроновой кислоты в принципе существуют. Одна из самых популярных процедур - это мезотерапия и, в частности, которая призвана повысить уровень увлажнённости кожи, стимулировать выработку коллагена и эластина, а также разгладить мелкие морщинки.

Гиалуроновая кислота [ГК] найдена во внеклеточном матриксе позвоночных тканей, в поверхностном покрытии определенных видов Streptococcus и болезнетворных бактериальных микроорганизмов Pasteurella, а также на поверхности некоторых частично пораженных вирусом морских водорослей. Синтазы гиалуроновой кислоты [ГКС], это ферменты, которые полимеризуют ГК, используя UDP-сахарные предшественники, которые найдены во внешних мембранах этих организмов. Были идентифицированы гены ГКС из всех вышеупомянутых источников. Кажется, существуют два отличных класса ГКС, что основано на различиях в аминокислотной последовательности, предсказанной топологии в мембране и предполагаемом механизме реакции.

Все ГКС были определены как синтазы класса I, за исключением ГКС у вида Pasteurella. Был также объяснен каталитический способ работы единственной ГКС класса II (пмГКС). Этот фермент удлиняет внешние ГК-присоединяемые олигосахаридные акцепторы путем добавления индивидуальных моносахаридных единиц к неуменьшающемуся концу, чтобы сформировать длинные полимеры in vitro; ни одна ГКС класса I не имеет такой способности. Способ и направление полимеризации ГК, катализируемой ГКС класса I, остаются неясными. Фермент пмГКС также был проанализирован на предмет двух имеющихся у него активностей: GlcUA-трансферазной и GlcNAc-трансферазной. Таким образом, два активных участка существуют в одном пмГКС полипептиде, опровергая широко принятую догму гликобиологи: "один фермент - один модифицированный сахар". Предварительные свидетельства позволяют предполагать, что у ферментов класса I может также быть два участка активности.

Каталитический потенциал фермента пмГКС может использоваться, чтобы создать новые полисахариды или проектировать олигосахариды. Из-за множества потенциальных ГК-базирующихся медицинских методов лечения, эта хемоэнзиматическая технология обещает принести пользу на пути нашего стремления к хорошему здоровью.

Ключевые слова

Гиалуроновая кислота (ГК), хондроитин, гликозилтрансфераза, синтаза, катализ, механизм, химерные полисахариды, монодисперсные олигосахариды

Введение

Гиалуронан [ГК] - очень богатый глюкозаминогликан в организме позвоночных, имеющий и структурную, и сигнальную роли. Определенные патогенные бактерии, а именно, группы А и С вида Streptococcus и тип А Pasteurella multocida, производят внеклеточный покрывающий ГК, называемый капсулой. У обоих видов ГК капсула и является фактором ядовитости, который обеспечивает бактериям сопротивляемость фагоцитам и комплементарность. Другой организм, производящий ГК - это морская водоросля хлорелла, инфицированная определенным большим двухцепочечным ДНКовым вирусом PBCV-1. Роль ГК в жизненном цикле этого вируса пока не ясна на данный момент.

Иллюстрация 1. Реакция биосинтеза ГК.

Ферменты класса гликозилтрансфераз, которые полимеризируют ГК, называются ГК-синтазами (или ГКС), по старой терминологии, включающей также ГК-синтетазы. Все известные ГК-синтазы - это разновидности одного полипептида, ответственные за полимеризацию цепи ГК. UDP-сахарные предшественники, UDP-GlcNAc и UDP-GlcUA используются ГК-синтазами в присутствии двухвалентного катиона (Mn и/или Mg) при нейтральном pH (рис. 1). Все синтазы являются мембранносвязанными белками в живой клетке и обнаружены в мембранной фракции после лизиса клеток.

Между 1993 - 1998 были идентифицированы и клонированы на молекулярном уровне ГК-синтазы групп A и С Streptococcus [спГКС и сеГКС соответственно], ГК-синтазы позвоночных животных [ГКС 1,2,3], ГК-синтаза водорослевого вируса [свГКС], а также ГК-синтаза типа A вида Pasteurella multocida [пмГКС]. Первые три типа ГК-синтаз, кажется, очень похожи в размере, аминокислотной последовательности и предсказанной топологии в мембране. ГК-синтаза вида Pasteurella, напротив, больше и обладает существенно отличающейся от других синтаз последовательностью и предсказанной топологией. Поэтому, мы предположили существование двух классов ГК-синтаз (таблица 1). Ферменты класса I включают стрептококковые, позвоночные и вирусные белки, в то время как белок вида Pasteurella в настоящее время единственный член класса II. У нас также есть некоторые свидетельства того, что каталитические процессы ферментов класса I и класса II отличаются.

Таблица 1. Два класса ГК-синтаз:

Хотя ГК-синтаза вида Pasteurella был последним обнаруженным ферментом из всех, некоторые особенности пмГКС способствовали существенному продвижению в его изучении в сравнении с некоторыми членами ферментов класса I, которые исследовались четыре десятилетия. Ключевая особенностью пмГКС, которая позволила разъяснить молекулярное направление полимеризации и идентификацию ее двух активных участков - это способность пмГКС удлиннять внешне расположенный акцепторный олигосахарид. Рекомбинантная пмГКС добавляет одиночные моносахариды повторным способом к ГК-ассоциированному олигосахариду in vitro. Внутренняя особенность каждой передачи моносахарида ответственна для того, чтобы формировать альтернативное повторение дисахаридов в этом глюкозаминогликане; одновременное формирование дисахаридной единицы не требуется. С другой стороны, никакое подобное удлиннение внешних акцепторов не было доказано ни для какого фермента класса I. Через фундаментальное научное исследование мы теперь развили некоторые биотехнологические применения замечательного белка класса ГК-синтаз вида Pasteurella.

Материалы & методы

Реагенты

Все реактивы для молекулярнобиологических исследований без специальной пометки были от Promega. Стандартные олигонуклеотиды были от Great American Gene Company. Все другие реактивы высокой чистоты, если иначе не отмечено, были от Sigma или от Fisher.

Усечение пмГКС и точечные мутанты

Был произведен ряд усеченных полипептидов, путем амплификации pPm7А вставки методом полимеразной цепной реакцией с Taq-полимеразой (Fisher) и синтетическими олигонуклеотидными праймерами, соответствующими различным частям пмГКС, с открытой рамкой считывания. Ампликоны затем были клонированы в плазмиду для экспрессии pKK223-3 (tac промотор, Pharmacia). Получившимися рекомбинантными конструкциями были трансформированы клетки Escherichia coli штамма TOP 10F" (Invitrogen) и выращены на среде LB (Luria-Bertani) с ампициллиновой селекцией. Мутации были сделаны, используя метод QuickChange сайт-направленного мутагенеза (Stratagene) с плазмидой pKK/пмГКС как ДНК шаблон.

Приготовление фермента

Для приготовления мембраны, содержащей рекомбинантный пмГКС полной длины, пмГК1-972 был изолирован из E.coli, как описано. Для растворимых усеченных пмГКС белков, пмГКС1-703, пмГКС1-650 и пмГКС1-703 - содержащих мутантов, клетки были извлечены с помощью В-PerТМ II Bacterial Protein Extraction Reagent (Pieree) согласно инструкции производителя, за исключением того, что процедура была выполнена при 7°C в присутствии ингибиторов протеаз.

Ферментные пути полимеризации ГК. GlcNAc модификация или GlcUA модификация

Три варианта было разработано, чтобы обнаружить происходит ли (а) полимеризация длинных цепей ГК или (b) добавление одиночного GlcNAc к GlcUA-конечному акцепторному олигосахариду ГК , или (c) добавление одиночного GlcUA к GlcNAc-конечному акцепторному олигосахариду ГК . Полная активность ГКС была оценена для раствора, содержащего 50 mM Tris, pH 7.2, 20 mM MnCl2, 0.1 M (NH4)2SO4, 1 M этиленгликоля, 0.12 mM UDP-(14C)GlcUA (0.01 μCi; NEN), 0.3 mM UDP-GlcNAc и различный набор ГК олигосахаридов, полученный из тестикул путем обработки гиалуронидазой [(GlcNAc-GlcUA)n, n= 4-10] при 30°C в течение 25 минут в объеме реакционной смеси 50 мкл. GlcNAc-трансферазная активность была оценена в течение 4 минут в той же буферной системе с различным набором ГК олигосахаридов, но только с одним сахаром в роли предшественника - 0.3 mM UDP-(3H)GlcUA (0.2 μCi; NEN). GlcUA-трансферазная активность была оценена в течение 4 минут в той же самой буферной системе, но только с 0.12 mM UDP-(14C)GlcUA (0.02 μCi) и с нечетным набором ГК олигосахаридов (3.5 мкг уроновой кислоты), приготовленных при помощи воздействия ацетата ртути на ГК-лиазу Streptomyces. Реакции были прекращены путем добавления SDS до 2% (w/v). Продукты реакции были отделены от субстратов путем бумажной (Whatman 3M) хроматографии с этанолом/1 М сульфат аммония, pH 5 5, как основной растворитель (65:35 для ГКС и оценки GlcUA-Tase; 75:25 для оценки GlcNAc-Tase). Для оценки ГКС образец бумажной полосы был промыт водой, и объединение радиоактивных сахаров в полимер ГК было обнаружено по сцинтилляции жидкости, рассчитанной при помощи BioSafe II коктейля (RPI). Для реакций полуиспытания образец и расположенные вниз по течению 6 см полосы были посчитаны по частям в 2 см. Все оценочные эксперименты были просчитаны таким образом, чтобы быть линейными относительно времени инкубации и концентрации белка.

Гель-фильтрационная хроматография

Размер ГК полимеров был проанализирован хроматографически на колонках Phenomenex PolySep-GFC-P 3000, элюция производилась 0.2 M нитратом натрия. Колонка была стандартизована флуоресцентными декстранами различного размера. Радиоактивные компоненты были обнаружены с помощью датчика LB508 Radioflow (EG & G Berthold) и коктейля Zinsser. По сравнению с полной оценкой ГКС, используя бумажную хроматографию, описанную выше, эти 3-минутные реакции содержали дважды UDP-сахарные концентрации, 0.06 μCi UDP-(14C)GlcUA и 0.25 нанограмма ряда ГК олигосахаридов. Кроме того, использовалось добавление кипящего (2 минуты) этилендиамина тетрациловой кислоты (финальная концентрация 22 mM), чтобы закончить реакции вместо добавления SDS.

Результаты и обсуждение

Утилизация и специфичность акцептора ГКС

Некоторые олигосахариды были проверены, в качестве акцепторов для рекомбинантного пмГКС1-972(Таблица 2). ГК олигосахариды были получены из тестикул путем гиалуронидазного щепления, а удлиннены пмГКС с помощью доставляемых подходящих UDP-сахаров. Восстановление борогидратом натрия не нарушает активность акцептора. С другой стороны, олигосахариды, полученные из ГК при помощи отщепления лиазой, не поддерживают удлиннение; дегидратированные ненасыщенные невосстановленные концевые остатки GlcUA нуждаются в гидроксильных группах, которые смогли бы присоединить входящий сахар из UDP-предшественника. Поэтому пмГКС-катализируемое удлиннение происходит в случае невосстановленных концевых групп. В ряде параллельных экспериментов было обнаружены рекомбинантные формы синтаз класса I - спГКС и х1ГКС, которые не удлинняют ГК-получаемые акцепторы. Принимая во внимание направление активности ферментов класса I, противоречивые сообщения были сделаны и необходимы дальнейшие исследования.

Таблица 2. Специфика олигосахаридных акцепторо пмГКС:

Интересно, что хондроитин сульфат пентамер является хорошим акцептором для пмГКС. Другие структурно связанные олигосахариды такие, как хитотетроза или хепарозан пентамер, однако, не служат акцепторами для пмГКС. В целом, пмГКС, кажется, требует, β-связанных GlcUA-содержащих акцепторных олигосахаридов. Мы выдвигаем гипотезу, что участок связывания олигосахаридов промежуточен в цепи удерживания ГК во время полимеризации.

Молекулярный анализ активности пмГКС трансферазы: два активных участка в одном полипептиде

Возможность измерить два компонента гликозилтрансферазной активности ГК синтазы, GlcNAc-трансфераза и GlcUA-трансфераза, позволил молекулярный анализ пмГКС. Мы отметили, что короткий дублированный мотив последовательности: Asp-Gly-Ser (Аспарагиновая к-та-Глицин-Серин), присутствовал в пмГКС. Из анализа сравнения гидрофобных групп многих других гликозилтрансфераз, которые производят β-связанные полисахариды или олигосахариды предположили, что вообще, существует два типа доменов: области "A" и "Б". ПмГКС, синтаза класса II, тем и уникальна, что содержит два "А" домена (личная коммуникация, B.Henrissat). Было предложено, что определенные члены класса I ГК синтаз (спГКС) содержат одиночные "А" и одиночные "Б" области. Различное удаление или точечные мутанты пмГКС были оценены для их способности полимеризовать ГК цепи или их способность добавлять одиночный сахар к ГК акцепторному олигосахариду (Таблица 3). Суммируя сказанное, пмГКС содержит два отличных друг от друга активных участка. Мутагенез аспартата мотива DGS (остаток 196 или 477) по обоим сайтам приводи к потере ГК полимеризации, но активность другого сайта оставалась относительно незатронутой. Таким образом, двойная активность ГК синтазы была преобразована в два различных одиночных действия гликозилтрансферазы.

Таблица 3. Активность пмГКС с удаленным участком или точечной мутацией.

Удаление последних 269 остатков от конечной карбоксильной группы преобразовало слабо выраженный мембранный белок в хорошо выраженный растворимый. Рассмотрение аминокислотной последовательности белка пмГКС в этой области, однако, не показывает типичных особенностей вторичной структуры, которые обеспечили бы прямое взаимодействие фермента с двойным слоем липида. Мы выдвигаем гипотезу, что конечная карбоксильная группа каталитического фермента пмГКС стыкуется с направляющим мембраносвязанным полисахарида транспортного аппарата живущей бактериальной клетки.

Первая "A" область пмГКС, А1, является GlcNAc-тазой, в то время как вторая "A" область, A2, является GlcUA-тазой (рис. 2). Это - первая идентификация двух активных участков для фермента, который производит гетерополисахарид, так же как ясное доказательство, что один фермент может действительно передать два различных сахара. Отличный от типа F фермент вида P. multocida, названный пмЦС, был найден, и вяснено, что он катализирует формирование несульфатируемого полимера хондроитина. ГК и хондроитин идентичны в структуре, за исключением упомянутого выше полимера, который содержит N-ацетилглюкозамин вместо GlcNAc. И пмГКС, и пмЦС на 87 % идентичны на уровне аминокислот. Большинство изменений в остатках находятся в области А1, что вполне совместимо с гипотезой о том, что эта область ответственна за передачу гексозамина.

Иллюстрация 2. Схематическое изображение пмГКС областей.
Два независимых трансферазных домена, А1 и A2, ответственны за катализ полимеризации цепи ГК. Повторяющиеся последовательные добавления одиночных сахаров быстро строят цепь ГК. Похоже, что карбоксильный конец пмГКС некоторым способом взаимодействует с мембранносвязанным транспортным аппаратом бактериальной клетки.

Иллюстрация 3. Модель биосинтеза ГК при помощи пмГКС.
Одиночные сахара добавляются к каждому "A" домену повторным способом к невосстанавливающемуся концу цепи ГК. Внутренняя точность каждой стадии активности трансферазы поддерживает повторение структуры дисахаридов ГК. Возникающая цепь ГК вероятно сохраняется пмГКС во время катализа через олигосахарид-связывающий участок.

Мы продемонстрировали эффективную передачу одиночного сахара с помощью пмГКС in vitro несколькими типами экспериментов, поэтому, мы выдвинули гипотезу, что цепи ГК формируются быстрым, повторяющимся добавлением одиночного сахара синтазой класса II (рис. 3). К настоящему времени, одна линия свидетельства предполагает, что фермент класса I также обладает двумя участками трансферазы. Мутация лейцинового остатка 314 на валин в ммГКС1, в части предварительного участка GlcUA-тазы, как сообщали, преобразовала эту ГКС позвоночного животного в хито-олигосахаридную синтазу. Ни один участок с соответствующей активностью GlcNAc-трансферазы не был идентифицирован.

Прививание полимера полисахаридными синтазами: добавление ГК к молекулам или твердым частицам

Исследование пмГКС в научно-исследовательской лаборатории преобразовало представления о ГК синтазах от царства трудных, упорных животноподобных чудовищ до потенциальных биотехнологических рабочих лошадок. Новые молекулы могут быть сформированы, используя способность пмГКС привить длинные цепи ГК на коротких ГК полученных цепях или хондроитин-производных акцепторах. Например, полезные акцепторы могут состоять из маленьких молекул или лекарств с ковалентно связанной ГК или хондроитин-олигосахаридные цепи (длиной в 4 сахара, например). В другом случае, цепи ГК могут быть добавлены к олигосахаридному праймеру, иммобилизованному на твердой поверхности (таблица 4). Таким образом, длинные цепи ГК могут быть мягко добавлены к чувствительным веществам или тонким устройствам.

В другом приложении, новые химерные полисахариды могут быть сформированы потому, что использование пмГКС олигосахаридным акцептором не столь же строго, как сахаридная трансферазная специфика. Хондроитин и хондроитин-сульфат признаны как акцепторы пмГКС и удлинняются ГК цепью различных длин (рис. 4). Наоборот, пмЦС очень гомлогичная хондроитин синтазе, распознает и удлинняет ГК акцепторы цепями хондроитина. Химерные молекулы глюкозаминогликана сформированы, содержа естественные, определенного соединения связи. Эти привитые полисахариды могут служить, чтобы присоединиться к клетке или ткани, которая связывает ГК с другой клеткой или ткань, связывающей хондроитин или хондроитин-сульфат. В определенных аспектах, привитые глюкозаминогликаны напоминают протеогликаны, которые являются существенными компонентами матрикса в тканях позвоночных. Но так как никакие компоновщики белка не присутствуют в химерных полимерах, то антигенность и проблемы протеолизиса, возникающие вокруг медицинского использования протеогликанов, устранены. Риск передачи инфекционных агентов тканями, извлеченными из животных, человеческому пациенту также уменьшен при использовании химерных полимеров.

Таблица 4. ПмГКС-инициированное прививание ГК на бусинки полиакриламида. Реакционная смесь содержит пмГКС, несущий радиоактивную метку UDP-(14C)GlcUA и UDP-(3H)GlcNAc, а также различные иммобилизованные праймеры сахаров (акцепторы, соединенные восстановительным аминированием в аминобусины) были представлены. Бусинки были промыты и радиоактивно инкорпорированы на другие бусины, измеренные методом расчета жидкостной сцинтилляции. ГК цепи были привиты на пластиковые бусины при использовании подходящего праймера и пмГКС.

Иллюстрация 4. Схематическое изображение привитых полисахаридных структур. ГК синтаза вида Pasteurella или хондроитин синтаза будут удлиннять определенные другие полимеры на невосстанавливающемся конце in vitro, чтобы сформировать новые химерные глюкозаминогликаны. Изображены некоторые примеры.

Синтез монодисперсной ГК и ГК-связанных олигосахаридов

В дополнение к добавлению большой полимерной ГК цепи к молекулам акцептора, пмГКС синтезируют определенные меньшие ГК олигосахариды в диапазоне от 5 до 24 сахаров. Используя фермент дикого типа и различные условия реакции, был относительно легко получен ГК олигосахарид, содержащий 4 или 5 моноахаридов, удлиненных несколькими сахарами до более длинных версий, которые очень часто трудно получить в больших количествах. Мы выяснили, что, комбинируя растворимый мутант GlcUA-Tase и растворимый мутант GlcNAc-Tase в той же самой смеси реакции позволяет формирование ГК полимера, если система снабжена акцептором. В течение 3-х минут была сделана цепь из примерно 150 сахаров (-30 кДа). Любая одиночная мутант-синтаза не сформирует в результате цепь ГК. Поэтому, если дальнейший контроль реакции сделан путем выборочного комбинирования различных ферментов, UDP-сахаров и акцепторов, то могут быть получены определенные монодисперсные олигосахариды (рис. 5).

Иллюстрация 5. Приготовление определенных олигосахаридов.
В этом примере, акцептор ГК тетрасахарид удлинняется одиночной хондроитин дисахаридной единицей, используя два шага с иммобилизованным мутантом синтазы вида Pasteurella (показано белыми стрелками). Изображенный продукт является новым гексасахаридом. Повторение цикла еще раз производит олигосахарид, два цикла формируют декасахарид, и т.д. Если акцептор был ранее соединен с другой молекулой (например препарат или лекарство), тогда новый конъюгат был бы удлиннен коротким ГК, хондроитином или гибридной цепью как и желательно.

Например, в одном воплощении, смесь UDP-GlcNAc, UDP-GlcUA и акцептора постоянно циркулирует через отдельные биореакторы с иммобилизованными мутант-синтазами, которые передают только одиночный сахар. С каждым циклом инкубации биореактора другая сахарная группа добавляется к акцептору, чтобы сформировать маленькие определенные ГК олигосахариды. Использование похожего пмЦС мутанта (например GalNAc-Tase) в одном из шагов позволило происходить формированию смешанных олигосахаридов при использовании UDP-GlcNAc. Биологическая активность и терапевтический потенциал маленьких ГК олигосахаридов - сложная область для исследования, которая потребует определенных, монодисперсных сахаров для однозначной интерпретации.

Заключение

Очевидно, существуют два различных класса ГК синтаз. Наиболее хорошо охарактеризован фермент класса II вида Рasteurella, удлинняющий цепь ГК повторяющимся присоединением одиночного сахара на невосстанавливающийся конец цепи ГК. Направление и способ работы синтаз класса I (стрептококковые, вирусные и ферменты позвоночных) остаются неясными. Относительно прикладных наук, способность пмГКС удлиннять экзогенно расположенные акцепторные молекулы полезна для создания новых молекул и/или устройств с потенциальным медицинским применением.

nailclients.ru - Сайт о косметологии